Вторник, 30.04.2024, 02:50
Главная Регистрация Вход
Приветствую Вас, Гость · RSS

     О КОМПАНИИ   КОНТАКТЫ   ГЕОГРАФИЯ ПРОДАЖ   УСЛОВИЯ ПРОДАЖИ   ОБРАТНАЯ СВЯЗЬ   ГОСТЕВАЯ КНИГА 
Меню сайта
Категории раздела
Справочные материалы [5]
...
ПОПУЛЯРНЫЕ ТОВАРЫ

Форма входа
Поиск
 Каталог статей
Главная » Статьи » Справочные материалы

Вольфрам
                          
Вольфрам

     Элемент №74 причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности вольфрам может поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» – так называли тогда наиболее распространенные минералы вольфрама – вольфрамит и шеелит. А элементарный вольфрам был открыт в последней четверти XVIII в.

     Очень скоро этот металл получил практическое значение – как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали*, элемент №74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость – позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые – нет.

* В нашей стране вольфрамовая сталь была впервые изготовлена на Мотовилихском заводе на Урале в 1865 г.

     Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.

     Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2...7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700...800°C, в то время как обычная сталь начинает размягчаться при нагреве всего до 200°C. Еще большей твердостью обладают «стеллиты» – сплавы вольфрама с хромом и кобальтом (без железа) и особенно карбиды вольфрама – его соединения с углеродом. Сплав «видна» (карбид вольфрама, 5...15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000...1100°C. Резцами из этого сплава можно снимать за минуту до 1500...2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.

Главные свойства

     Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее – в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.

     По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410°C, а кипит лишь при 6690°C. Такая температура – на поверхности Солнца!

     А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам – блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок – серый, темно-серый и даже черный (чем мельче зернение, тем темнее).

Сплавы

     Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то просто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы или весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии.

     Во избежание окисления все операции проводят в вакууме или в атмосфере аргона.

     Делается это так. Сначала смесь металлических порошков прессуют, затем спекают и подвергают дуговой плавке в электрических печах. Иногда прессуют и спекают один вольфрамовый порошок, а полученную таким путем пористую заготовку пропитывают жидким расплавом другого металла: получаются так называемые псевдосплавы. Этим методом пользуются, когда нужно получить сплав вольфрама с медью и серебром.

     С хромом и молибденом, ниобием и танталом вольфрам дает обычные (гомогенные) сплавы при любых соотношениях. Уже небольшие добавки вольфрама повышают твердость этих металлов и их устойчивость к окислению.

     Сплавы с железом, никелем и кобальтом более сложны. Здесь, в зависимости от соотношения компонентов, образуются либо твердые растворы, либо интерметаллические соединения (химические соединения металлов), а в присутствии углерода (который всегда имеется в стали) – смешанные карбиды вольфрама и железа, придающие металлу еще большую твердость.

     Очень сложные соединения образуются при сплавлении вольфрама с алюминием, бериллием и титаном: в них на один атом вольфрама приходится от 2 до 12 атомов легкого металла. Эти сплавы отличаются жаропрочностью и устойчивостью к окислению при высокой температуре.

     На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой); из них делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель и алюминий.

     Из всех сплавов вольфрама наибольшее значение приобрели вольфрамсодержащие стали. Они устойчивы к истиранию, не дают трещин, сохраняют твердость вплоть до температуры красного каления. Инструмент из них не только позволяет резко интенсифицировать процессы металлообработки (скорость обработки металлических изделий повышается в 10...15 раз), но и служит намного дольше, чем тот же инструмент из другой стали.

     Вольфрамовые сплавы не только жаропрочны, но и жаростойки. Они не корродируют при высокой температуре под действием воздуха, влаги и различных химических реагентов. В частности, 10% вольфрама, введенного в никель, достаточно, чтобы повысить коррозионную устойчивость последнего в 12 раз! А карбиды вольфрама с добавкой карбидов тантала и титана, сцементированные кобальтом, устойчивы к действию многих кислот – азотной, серной и соляной – даже при кипячении. Им опасна только смесь плавиковой и азотной кислот.

Где применяется вольфрам

     Из вольфрамовой стали и других сплавов, содержащих вольфрам или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей.

     Вольфрам – непременная составная часть лучших марок инструментальной стали. В целом металлургия поглощает почти 95% всего добываемого вольфрама. (Характерно, что она широко использует не только чистый вольфрам, но главным образом более дешевый ферровольфрам – сплав, содержащий 80% W и около 20% Fe; получают его в электродуговых печах).

     Вольфрамовые сплавы обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные вещества. Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапии, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.

     Сплав карбида вольфрама с 16% кобальта настолько тверд, что может частично заменить алмаз при бурении скважин.

     Псевдосплавы вольфрама с медью и серебром – превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов.

     О применении вольфрама в волосках электроламп говорилось в начале статьи. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.

     В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, фосфорно-вольфрамовая гетерополикислота применяется для производства лаков и ярких, устойчивых на свету красок. Раствор вольфрамата натрия Na2WO4 придает тканям огнестойкость и водонепроницаемость, а вольфраматы щелочноземельных металлов, кадмия и редкоземельных элементов применяются при изготовлении лазеров и светящихся красок.




Источник: http://n-t.ru
Категория: Справочные материалы | Добавил: Воронцова (18.08.2011)
Просмотров: 3562 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
Copyright MyCorp © 2024
Наш опрос
Каким из представленных товаров вы уже пользовались?
Всего ответов: 101
ДРУЗЬЯ САЙТА
  • Белый каталог сайтов, хостинг
  • Сообщество uCoz
  • Фиалковый Рай
  • KaRoyal.cn - Каталог сайтов
  • Рукодельница
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Конструктор сайтов - uCoz